Let G be a graph,the binding number of G is defined as bind(G)=min|N_G(X)||X|:Ф≠XV(G),N_G(X)≠V(G)The relationship of binding numbers bind(G) to factional -factors of graphs was discussed,and some sufficient conditions of existence of fractional -factors with the graphs were given.
設G是一個簡單無向圖,G的聯(lián)結數(shù)定義為bind(G)=min|NG(X)||X|:Ф≠X V(G),NG(X)≠V(G)研究了圖的聯(lián)結數(shù)bind(G)與圖的分數(shù)[a,b]-因子之間的關系,給出了圖有分數(shù)[a,b]-因子的若干充分條件。
In this paper, we first introduce the fractional B-spline wavelets proposed by Blu and Unser, and discuss their properties and construction method.
本文首先介紹了分數(shù)B樣條小波的構成及其性質,基于分數(shù)B樣條小波一維離散Fourier變換公式,推導出了分數(shù)B樣條小波二維離散Fourier變換公式,從而實現(xiàn)了圖像分解和重構。